Topic 9.1 – Understanding Ratios

Ratio – a relationship where for every "x" units of one quantity there are "y" units of another quantity.

Terms – the quantities "x" and "y" in a ratio are called "terms."

*A ratio can be written three ways:

- 1. x to y
- 2. x:y
- 3. <u>x</u> y

*A ratio can compare "part to part" or "part to whole."

Example 1:

There are 14 cats and 17 dogs at PetSmart, for a total of 31 pets in the store. Write a ratio for each scenario.

- 1. Cats to Dogs: 14 to 17
- 14:17

<u>14</u> 17

- 2. Cats to Total: 14 + 31
- (2) 14: 31

(3) 14 31

Example 2:

A sixth-grade basketball team has 3 centers, 5 forwards, and 6 guards. Write a ratio for each comparison in three different ways.

- 1. Forwards to Guards:
- 5 to 6
- 5:6
- 5 6

TOTAL

- 2. Centers to Total:
- 3 to 14
- 3:14
- <u>3</u> 14

- 3. Centers to Guards:
- 3 to 6
- 3:6
- 3

Topic 9.2 - Equivalent Ratios

Proportion – a mathematical statement where two rations are equivalent (equal to each other).

*How can you find equivalent ratios?

1. Use multiplication:

$$\frac{16 \times 2}{48 \times 2} = \frac{32}{96}$$

* Multiply both terms by the same nonzero number

$$\frac{16}{48} = \frac{32}{96}$$

 $\frac{16}{40} = \frac{32}{910}$ * This is a proportion!

2. Use division:

$$\frac{16 \div 2}{48 \div 2} = \frac{8}{24}$$

$$\frac{16 \div 16}{48 \div 16} = \frac{1}{3}$$

* Divide both terms by the same nonzero number

* you can also divide the terms by their GCF (greatest common factor) to write the ratio in simplest

*How can you decide whether two ratios form a proportion?

- 1. Compare the units to see if they are the same across the top and bottom.
- 2. Write each ratio in simplest form. Divide by the GCF (Greatest Common Factor).
- 3. Compare the simplest forms to see if they are the same. If they are the same, the two ratios form a proportion!

Top and bottom units are the same.

$$\frac{7 \div 7}{14 \div 7} = \left(\frac{1}{2}\right) \quad \frac{12 \div 12}{24 \div 12} \left(\frac{1}{2}\right)$$

* Both equal & so the ratios are proportional

Topic 9.4 – Using Ratios Table

- 1. For every 7 cans of tennis balls sold at a sports store, 3 tennis rackets are sold. At this rate, how many cans of tennis balls would be sold if 15 tennis rackets were sold?
- Write a proportion. Use x for the number of cans of tennis balls that would be sold if 15 rackets were sold.

$$\frac{7 \text{ cans}}{3 \text{ rackets}} = \frac{\times}{15 \text{ rackets}}$$

- Make a ratio table to solve the proportion. Find ratios equivalent to 7/3. Multiply both terms of the ratio by 2, 3, 4, and so on, until you find 15 tennis rackets sold.

cans	7	14	21	28	
rockets	3	6	9/	12	15
7 ×5 35					
		3	15	5	
		~	5 2		

2. To make plaster, Kevin mixes 3 cups of water with 4 pounds of plaster powder. Complete a ratio table. How much water will he mix with 20 pounds of powder?

Water	3	6	9	12	15
powder	4	8	12	16	20

(15 cups of water

3. Answer the question and draw a ratio table to show how you solved the proportion.

(a.3	3 × 3	X
	7	21
	×3	

3	4	9
7	14/	21

110	220	330
2	4	6

Topic 9.5 - Ratios and Graphs

- 1. Ellen is shopping for supplies at Jake's Party Store. Make a table to show how much Ellen will spend to by 3, 6, 9, or 12 balloons. Then plot the pairs of values in a coordinate graph and use the graph to find how much Ellen would spend if she wanted to buy 18 balloons.
- Balloons 3 for \$2
- Hats 5 for \$3
- Streamers 4 for \$1

The ratio 3 balloons to \$2 represents the cost of the balloons. Find equivalent ratios for 6, 9, and 12 balloons. Make a table using the equivalent ratios.

3 \times 2 \checkmark

	Balloons	3	6	9	12
İ	cost	2	4	6	8

3 ×2 (6) 2 × 2 (4)

 $\frac{3\times3}{2\times3} \times \frac{9}{6}$

 $\frac{3 \times 4}{2 \times 4} = 12$

Plot the pairs of values on the coordinate plane for each ratio x to y. Connect the points with a dashed line and extend the line to find the cost of 18 balloons.

$$\frac{3 \times 6}{2 \times 6} = \frac{18}{12}$$

2. Complete the ratio table to show equivalent ratios for 3 to 8.

(d)
$$\frac{3 \times 5}{8 \times 5} = \frac{15}{40}$$

(b)
$$\frac{3 \times 3}{8 \times 3} = \frac{9}{24}$$

3	6	9	12	15
8	16	24	32	40

Topic 9.6 - Problem Solving: Draw a Picture

1.	Gillian is making jewelry using gold beads and colored beads. The ratio of the number of gold
	beads to the number of colored beads used in a piece of jewelry is 4:5. What fraction of the
	beads are colored beads?

- Draw a picture to show the relationship. The ratio of the number of gold beads to the number of colored beads is 4:5.

- If there were 4 gold beads and 5 colored beads, there would be 9 beads in all. The fraction of colored beads would be 5/9.

2. Figure A is 3 times as long as Figure B.

- What is the ratio of the length of Figure A to Figure B?

What fraction of the length of Figure A is the length of Figure B?

3. Tomas and Isaac shared a sum of money in the ratio 3:5.

- Express Isaac's share as a fraction of Tomas' share. 5

- What fraction of the whole sum of money is Tomas' share? 3

- What fraction of the whole sum of money is Isaac's share?